37 research outputs found

    Increasing prevalence and high incidence of celiac disease in elderly people: A population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Celiac disease may emerge at any age, but little is known of its appearance in elderly people. We evaluated the prevalence of the condition in individuals over 55 years of age, and determined the incidence of biopsy-proven celiac disease (CDb) and celiac disease including seropositive subjects for anti-tissue transglutaminase antibodies (CDb+s).</p> <p>Methods</p> <p>The study based on prevalence figures in 2815 randomly selected subjects who had undergone a clinical examination and serologic screening for celiac disease in 2002. A second screening in the same population was carried out in 2005, comprising now 2216 individuals. Positive tissue transglutaminase antibodies were confirmed with small bowel biopsy.</p> <p>Results</p> <p>Within three years the prevalence of CDb increased from 2.13 to 2.34%, and that of CDb+s from 2.45 to 2.70%. Five new cases were found among patients previously seronegative; two had minor abdominal symptoms and three were asymptomatic. The incidence of celiac disease in 2002–2005 was 0.23%, giving an annual incidence of 0.08% in this population.</p> <p>Conclusion</p> <p>The prevalence of celiac disease was high in elderly people, but the symptoms were subtle. Repeated screening detected five biopsy-proven cases in three years, indicating that the disorder may develop even in the elderly. Increased alertness to the disorder is therefore warranted.</p

    Identification and characterization of a novel zebrafish (Danio rerio) pentraxin-carbonic anhydrase

    Get PDF
    Background: Carbonic anhydrases (CAs) are ubiquitous, essential enzymes which catalyze the conversion of carbon dioxide and water to bicarbonate and H + ions. Vertebrate genomes generally contain gene loci for 15-21 different CA isoforms, three of which are enzymatically inactive. CAVI is the only secretory protein of the enzymatically active isoforms. We discovered that non-mammalian CA VI contains a C-terminal pentraxin (PTX) domain, a novel combination for both CAs and PTXs.Methods: We isolated and sequenced zebrafish (Danio rerio) CA VI cDNA, complete with the sequence coding for the PTX domain, and produced the recombinant CA VI-PTX protein. Enzymatic activity and kinetic parameters were measured with a stopped-flow instrument. Mass spectrometry, analytical gel filtration and dynamic light scattering were used for biophysical characterization. Sequence analyses and Bayesian phylogenetics were used in generating hypotheses of protein structure and CAVI gene evolution. A CAVI-PTX antiserum was produced, and the expression of CA VI protein was studied by immunohistochemistry. A knock-down zebrafish model was constructed, and larvae were observed up to five days post-fertilization (dpf). The expression of ca6 mRNA was quantitated by qRT-PCR in different developmental times in morphant and wild-type larvae and in different adult fish tissues. Finally, the swimming behavior of the morphant fish was compared to that of wild-type fish.Results: The recombinant enzyme has a very high carbonate dehydratase activity. Sequencing confirms a 530-residue protein identical to one of the predicted proteins in the Ensembl database (ensembl. org). The protein is pentameric in solution, as studied by gel filtration and light scattering, presumably joined by the PTX domains.Mass spectrometry confirms the predicted signal peptide cleavage and disulfides, and N-glycosylation in two of the four observed glycosylation motifs. Molecular modeling of the pentamer is consistent with the modifications observed in mass spectrometry. Phylogenetics and sequence analyses provide a consistent hypothesis of the evolutionary history of domains associated with CAVI in mammals and nonmammals. Briefly, the evidence suggests that ancestral CA VI was a transmembrane protein, the exon coding for the cytoplasmic domain was replaced by one coding for PTX domain, and finally, in the therian lineage, the PTX-coding exon was lost. We knocked down CA VI expression in zebrafish embryos with antisense morpholino oligonucleotides, resulting in phenotype features of decreased buoyancy and swim bladder deflation in 4 dpf larvae.Discussion: These findings provide novel insights into the evolution, structure, and function of this unique CA form

    Efficient Streaming Detection of Hidden Clusters in Big Data Using Subspace Stream Clustering

    No full text
    Recently, many data mining techniques were revisited to cope with the new big data challenges. Nearly all of these algorithms considered the efficiency of the mining algorithm to survive the increasing size of the data. However, as the dimensionality of the data increases, not only the efficiency but also the effectiveness of traditional mining algorithms is compromised. For instance, clusters hidden in some subspaces are hard to be detected using traditional clustering algorithms, as the dimensionality of the data increases. In this paper, we consider both the huge size, and the high dimensionality of big data by providing a novel solution that presents a three-phase model for subspace stream clustering algorithms. Our novel model, overcomes the huge size of the big data in its first phase, by continuously applying a streaming concept over the huge data objects, and summarizing them into micro-clusters. Then, after each certain batch of data, or after upon a user request, the second phase is applied over the data summarized in micro-clusters, to reconstruct the current distribution of the data out of the current summaries. In the third phase, a subspace clustering algorithm is applied to overcome the high dimensionality of the data, and to find hidden clusters within some subspace. An extensive evaluation study over different scenarios that follow our model over a big data set is performed

    Evaluation of Subspace Clustering Quality

    No full text

    Carbonic Anhydrase VI in Skin Wound Healing Study on Car6Knockout Mice

    Get PDF
    Carbonic anhydrases (CAs) contribute to tumor cell migration by generating an acidic environment through the conversion of carbon dioxide to bicarbonate and a proton. CA VI is secreted to milk and saliva, and it could contribute to wound closure, as a potential trophic factor, in animals that typically lick their wounds. Our aim was to investigate whether human CA VI improves skin-wound healing in full-thickness skin-wound models. The effect was studied in Car6 &minus;/&minus; knockout mice and wild type littermates. Half of both mice strains were given topically administered, milk-derived CA VI after wounding and eight hours later. The amount of topically given CA VI exceeded the predicted amount of natural saliva-delivered CA VI. The healing was followed for seven days and studied from photographs and histological sections. Our results showed no significant differences between the treatment groups in wound closure, re-epithelization, or granulation tissue formation, nor did the Car6 genotype affect the healing. Our results demonstrate that CA VI does not play a major role in skin-wound healing and also suggest that saliva-derived CA VI is not responsible for the licking-associated improved wound healing in animals
    corecore